Pls RECHECK NUMBER 6!!!
Please Just Hold On… Keep Clicking TheREFRESH PAGE So That Once We Drop It You Are Going To See It…….
EXAM COMPLETED.
GOOD LUCK GUYS!!!
INVITE YOUR FRIENDS FOR TOMORROW EXAM.
GO-TO FACEBOOK AND LIKE OUR PAGE EMMANUELNEWZ
MATHS OBJ LOADING...
1-10: ACBCDDCBAA
11-20: CDCABCCCAC
21-30: DADBABCDAD
31-40: BADADBCACB
41-50: ADDDBDADCA
NO1) On February 28th 2012, value = (100-30/100) * #900,00.00
= 70/100 * #900,00
= #630,000.00
On february 28th 2013, value = (100-22/1000 * #630,00
= 78/100 8 #630,000
= #491,400
On february 28th 2014, value = 78/100 8 #491,400
=383,292
On february 28th 2015, value = 78/100 * #383,292
= #298,967.76
NO2) Given that y = 2pxˆ² – p² x – 14
AT (3, 10)
10 = 2p(3)² – p² (3) – 14
10 = 18p – 3p² – 14
3p² – 18p + 24 = 0
p² – 6p + 8 = 0
using factor method,
p² – 2p -4p + 8 = 0
p(p-2) – 4(p-2) = 0
(p-4)(p-2) = 0
p-4 = 0 or p-4 = 0
3a)
The diagonal = 10.2m and 9.3cm
Using Pythagoras theory
Ac² = 10.2² + 9-3²
Ac² = 104.04 + 86.49
Ac² = 190.53
Ac² = √190.53
Ac² = 13.80
3b)
DRAW THE DIAGRAM
Using Pythagoras theory
5² = 3² + x²
x² = 5² – 3²
X²= 25 – 9
X² = √16
X= 4cm
CosX = adjacent/hyp
= 4/5
Tan X = opp/adj. = 3/4
5cos x – 4tan x
5(4/5)- 4(3/4)
20/5 – 12/4
4-3= 1
The diagonal = 10.2m and 9.3cm
Using Pythagoras theory
Ac² = 10.2² + 9-3²
Ac² = 104.04 + 86.49
Ac² = 190.53
Ac² = √190.53
Ac² = 13.80
3b)
DRAW THE DIAGRAM
Using Pythagoras theory
5² = 3² + x²
x² = 5² – 3²
X²= 25 – 9
X² = √16
X= 4cm
CosX = adjacent/hyp
= 4/5
Tan X = opp/adj. = 3/4
5cos x – 4tan x
5(4/5)- 4(3/4)
20/5 – 12/4
4-3= 1
NUMBER 4 IMAGE
4ai)
sum of angle in a D =180degree
xdegree + 90degree + 180degree – (3x+15)=180degree
xdegree + 90degree + 180degree – 3x+15=180degree
-2x=180degree – 255
+2x/2=+75/2
x=37.5
4aii)
<RsQ =180 – (3x+15)
<RsQ =180-(337.5+15)
=180-(112.5 + 15)
=180 – 127.5
<RsQ= 52.5degree
4b)
2N4seven =15Nnine
27^2+N7^1+47degree =19^2 + 59^1+N9degree
949+N7+41=181+59+N*1
98+7N+4=81+45+N
7N+102=126+N
7N-N=126-102
6N/6 =24/6
N=4
NUMBER 5 IMAGE
sum of angle in a D =180degree
xdegree + 90degree + 180degree – (3x+15)=180degree
xdegree + 90degree + 180degree – 3x+15=180degree
-2x=180degree – 255
+2x/2=+75/2
x=37.5
4aii)
<RsQ =180 – (3x+15)
<RsQ =180-(337.5+15)
=180-(112.5 + 15)
=180 – 127.5
<RsQ= 52.5degree
4b)
2N4seven =15Nnine
27^2+N7^1+47degree =19^2 + 59^1+N9degree
949+N7+41=181+59+N*1
98+7N+4=81+45+N
7N+102=126+N
7N-N=126-102
6N/6 =24/6
N=4
NUMBER 5 IMAGE
5a)
m+n+s+p+q/5=12
m+n+s+p+q=60……(1)
Now;
(m+4)+(n-3)+(5+6)+p-2)+(q+8)/5
=(m+n+s+p+q)+(4-3+3+6-2+8)/5
=60+13/5
=73/5
=14.6
(b)
75% of 500 = 375 people
Number of people above 65 years = 500-375
=125
m+n+s+p+q/5=12
m+n+s+p+q=60……(1)
Now;
(m+4)+(n-3)+(5+6)+p-2)+(q+8)/5
=(m+n+s+p+q)+(4-3+3+6-2+8)/5
=60+13/5
=73/5
=14.6
(b)
75% of 500 = 375 people
Number of people above 65 years = 500-375
=125
25% of 500 = 125
Number of people below 15 years = 125
Number between 15 years and 65 years
=500-(125+125)
=500-250
=250 people
Number of people below 15 years = 125
Number between 15 years and 65 years
=500-(125+125)
=500-250
=250 people
(6)
Total number of cars on road worthiness = 240
60% passed ie 60/100×240/1 = 144cars.
Number that failed = 240-144 = 96cars
Total number of cars on road worthiness = 240
60% passed ie 60/100×240/1 = 144cars.
Number that failed = 240-144 = 96cars
(6a)
Draw the Venn diagram
C = clutch
B = brakes
S = steering
Draw the Venn diagram
C = clutch
B = brakes
S = steering
(6b)
From the diagram above
E = 28+12+8+6+x+6+2x
96=60+3x
96-60=3x
36/3 = 3x/3
Therefore X = 12
From the diagram above
E = 28+12+8+6+x+6+2x
96=60+3x
96-60=3x
36/3 = 3x/3
Therefore X = 12
(i) The no of cars that had faulty brakes
=12+8+6+x (Since X = 12)
=12+8+6+12 = 38
(ii) Only one fault = (no of clutch only) + (no of brakes only) + (no of steering only)
=28+x+12x = 28+12+24
=64cars
=12+8+6+x (Since X = 12)
=12+8+6+12 = 38
(ii) Only one fault = (no of clutch only) + (no of brakes only) + (no of steering only)
=28+x+12x = 28+12+24
=64cars
7a)
(y-y1)/(x-x1)=(y2-y1)/(x2-x1)
(y-5)/(x-2)=(-7-5)/(-4-2)
(y-5)/(x-2)=-12/-6
(y-5)/(x-2)=2
Cross multiply
y-5=2(x-2)
y-5=2x-4
2x-y-4+5=0
2x-y+1=0
(y-y1)/(x-x1)=(y2-y1)/(x2-x1)
(y-5)/(x-2)=(-7-5)/(-4-2)
(y-5)/(x-2)=-12/-6
(y-5)/(x-2)=2
Cross multiply
y-5=2(x-2)
y-5=2x-4
2x-y-4+5=0
2x-y+1=0
(7bi)
DRAW THE DIAGRAM
DRAW THE DIAGRAM
(7bii)
(I)
p^2=q+r^2-2qrcosP
p^2=8^2+5^2-2*8*5*cos90
p^2=64+25-0
p^2=89
p=sqroot(89)
p=9.4339km
therefore |QR|=9.43km(3 sf)
(I)
p^2=q+r^2-2qrcosP
p^2=8^2+5^2-2*8*5*cos90
p^2=64+25-0
p^2=89
p=sqroot(89)
p=9.4339km
therefore |QR|=9.43km(3 sf)
(II)
q/sinQ=p/sinP
8/sinQ=9.4339/sin90
sinQ=(8*sin90/9.4339
sinq=(8*1)/9.4339 =0.8480
Q=sin^1(0.8480)=57.99 degrees
but Q=30+ A
A=Q-30
=57.99-30
A=27.99 degrees
The bearing of R from Q
=180-A
180-27.99
=155.01
=>152 degrees
q/sinQ=p/sinP
8/sinQ=9.4339/sin90
sinQ=(8*sin90/9.4339
sinq=(8*1)/9.4339 =0.8480
Q=sin^1(0.8480)=57.99 degrees
but Q=30+ A
A=Q-30
=57.99-30
A=27.99 degrees
The bearing of R from Q
=180-A
180-27.99
=155.01
=>152 degrees
==========================================
(8a)
Cost price for Lami= #300.00
Profit made by lami = x%
Ie selling price for lami=(100+x/100)×#300
=#3(100+x)
=#(300+3x)
Cost price for Lami= #300.00
Profit made by lami = x%
Ie selling price for lami=(100+x/100)×#300
=#3(100+x)
=#(300+3x)
Bola’s cost price = #3(100+x)
Profit made by bola =x%
Selling price for bola =(100+x/100)×#3(100+x)
=#3/100(100+x)²
Profit made by bola =x%
Selling price for bola =(100+x/100)×#3(100+x)
=#3/100(100+x)²
James cost price =#3/100(100+x)²=300+(6x+3/4)
expanding;
3/100(10000+200+x²) = 300+3/4+6x
3(10000+200x+x²)=30000+75+600x
30000+600x+3x²=30000+75+600x
3x²=75
X² = 75/3
X² = 25
X = square root 25
X = 5
expanding;
3/100(10000+200+x²) = 300+3/4+6x
3(10000+200x+x²)=30000+75+600x
30000+600x+3x²=30000+75+600x
3x²=75
X² = 75/3
X² = 25
X = square root 25
X = 5
(8b)
3x-2<10+x<2+5x
3x-2<10+x & 10+x<2+5x
3x-x<10+2 & 10-2<5x-x
2x<12 8<4x
X<12/2 4x>8
X<6 x>8/4
X>2
3x-2<10+x<2+5x
3x-2<10+x & 10+x<2+5x
3x-x<10+2 & 10-2<5x-x
2x<12 8<4x
X<12/2 4x>8
X<6 x>8/4
X>2
Also; 3x-2<2+5x
-4<2x
2x > -4
X > -2
Therefore; Range is -2
======================================
-4<2x
2x > -4
X > -2
Therefore; Range is -2
======================================
(9a)
Draw the diagram
Angles PTR and PSR are similar
|PT|/|PS| = |TQ|/|SR|
In angle PTR
|TQ|²=|PT|²+|PQ|²-2|PT||PQ|cos30degrees
=4²+6²-2×4×6×cos30
=16+36-48×0.8660
=52-41.568
=10.432
|TQ|=√10.432 =3.22cm
4/10 = 3.22/|SR|
4|SR| = 10×3.22
|SR| = 32.2/4
|SR| = 8.05cn
Approximately 8cm(to the nearest whole number)
Draw the diagram
Angles PTR and PSR are similar
|PT|/|PS| = |TQ|/|SR|
In angle PTR
|TQ|²=|PT|²+|PQ|²-2|PT||PQ|cos30degrees
=4²+6²-2×4×6×cos30
=16+36-48×0.8660
=52-41.568
=10.432
|TQ|=√10.432 =3.22cm
4/10 = 3.22/|SR|
4|SR| = 10×3.22
|SR| = 32.2/4
|SR| = 8.05cn
Approximately 8cm(to the nearest whole number)
(9b)
Atqrs = AΔPSR – AΔPTR
AΔPTR = 1/2×4×6×sin30
=2×6×0.5
=6cm²
AanglePTQ/AanglePSR = |PT|²/|PS|²
6/AanglePSR = 4²/10²
6/AanglePSR = 16/100
16×AanglePSR = 6×100
AanglePSR = 600/16 = 37.5cm2
ATQRS = 37.5 – 6
=31.5cm2
=32cm2
Atqrs = AΔPSR – AΔPTR
AΔPTR = 1/2×4×6×sin30
=2×6×0.5
=6cm²
AanglePTQ/AanglePSR = |PT|²/|PS|²
6/AanglePSR = 4²/10²
6/AanglePSR = 16/100
16×AanglePSR = 6×100
AanglePSR = 600/16 = 37.5cm2
ATQRS = 37.5 – 6
=31.5cm2
=32cm2
(10a) Using Pythagoras theorem from SPQ
|SQ|^2 = 12^2 + 5^2
= 144+25
=169
SQ= sqroot of 169
= 13cm
Sin tita= 5/13 = 0.3846
Tita= Sin^-1(0.3846)
= 22.6degrees
From PRQ
Sin tita= |PR|/12
Sin 22.6 = PR/12
Sin 22.6= PR/12
PR= 12xsin 22.6
PR= 12×0.3843
PR= 4.61cm
(10bii)Let the height at which m touches the wall= y
Cos x^degrees= 8/10= 0.8
x^degrees= Cos^-1(0.8)
= 36.87degrees
Sin x^degrees = y/12
Sin 36.87= y/12
y= 12xsin36.87
y= 12×0.60000
y= 7.2m
|SQ|^2 = 12^2 + 5^2
= 144+25
=169
SQ= sqroot of 169
= 13cm
Sin tita= 5/13 = 0.3846
Tita= Sin^-1(0.3846)
= 22.6degrees
From PRQ
Sin tita= |PR|/12
Sin 22.6 = PR/12
Sin 22.6= PR/12
PR= 12xsin 22.6
PR= 12×0.3843
PR= 4.61cm
(10bii)Let the height at which m touches the wall= y
Cos x^degrees= 8/10= 0.8
x^degrees= Cos^-1(0.8)
= 36.87degrees
Sin x^degrees = y/12
Sin 36.87= y/12
y= 12xsin36.87
y= 12×0.60000
y= 7.2m
KEEP REFRESHING
COMMENT DROP
No comments:
Post a Comment